1 Data Format

1.1 Timetable and Adjustments

The timetable itself is given in a CSV file where each row represents a single leg, i.e. one spe-
cific train moving from one station to the next one at a given time. A row consists of the
identifier leg_id together with additional data on the leg. Namely, the corresponding trains
train_id, the start_station_id and end_station_id of the stations the leg departs from and arrives
at, the track_id of the track being used, the nominally scheduled procedure for this leg as nom-
inal_departure_configuration, and finally all alternative departure_configurations. Departure con-
figurations are represented as strings of the format d_t_p where d is the legs departure time
in seconds since the beginning of the planning horizon, t is the time in seconds required to
travel to the next station and p is the profile_id of the power profile used by the train on this leg.
Each leg has exactly one nominal departure configuration, representing the timetable, whereas
it may have multiple alternative departure configurations, representing the possible timetable
adjustments for this leg. The different departure configurations are separated by a whitespace
character and the nominal departure configuration is always included in the departure config-
uration alternatives. Table [I|summarizes the columns as well as the data types used and gives
an example value for each column.

Table 1 Timetable Data Columns

Column Name Data Type Example

leg_id int 1

train_id int 1

track_id int 1

start_station_id int 1

end_station_id int 2
nominal_departure_configuration str “17285_71_4489"
departure_configurations str “17285_67_5635 17285_71_4489 ...”

1.2 Power Profiles

Similar to the legs in the timetable, each profile is saved as a row in a CSV file with two columns.
A row contains the profiles identifier profile_id together with the profiles power_consumptions,
represented as a string consisting of floats, which are rounded to three decimals and separated
by whitespace characters. Each float represents the average power consumption during one
second in megawatts. Therefore, a profile corresponding to a travel time of seconds will consist
of t values. Table 2|states the data types as well as example values.

Table 2 Profile Data Columns

Column Name Data Type Example
profile_id int 5635
power_consumptions str “0.2250.422 0.675 0.939 1.255 ...”

1.3 Constraints

The final building block of an instance is the set of timetabling constraints saved in a JSON
file. Table 3| gives an overview of the constraint types together with the data types used to
represent them and the remainder of the section consists of paragraphs offering more detail on
each constraint type.

Table 3 Constraint Data Dictionaries

Constraint Name Key Data Type Value Example
headway_time_constraints first_leg_id int 3131
second_leg_id int 3157
min_headway_time int 100
single_track_headway_constraints first_leg_id int 6069
second_leg_id int 458
dwell_time_constraints first_leg_id int 1
second_leg_id int 2
min_dwell_time int 20
terminal_turnaround_constraints first_leg_id int 206
second_leg_id int 6149
min_dwell_time int 420
connection_constraints first_leg_id int 8846
second_leg_id int 3110
min_connection_time int 180
max_connection_time int 240
connection_type str “arrival_to_departure”
recuperation_subnets subnet_id int 1
track_ids List[int] [1,2,3,..]

Headway Time Constraints

{"first_leg_id": 3131,
"second_leg_id": 3157,
"min_headway_time": 100}

The field min_headway_time is the time in seconds required between the trains represented by
the first and second leg, which are consecutively using the same track in the same direction.
We assure the minimum headway time between both, the departures as well as the arrivals of
the two legs involved. Therefore, a valid timetable must ensure that the constraints

di+h<d,
di+h+h<dy+t

holds, where d1, d; are the departure times of the first and second leg, t1, t> the respective travel
times and the minimal headway time. Note, that depending on which train is faster, only the
first or only the second constraint must be stated explicitly.

Single Track Headway Constraints

{"first_leg_id": 6096,
"second_leg_id": 458}

Between some stations there exists only one physical track which is then used for both direc-
tions. In this case, the legs represent two trains using the same track in opposite directions.A
valid timetable then has to assert that the first train arrives at its destination before the second
leg departs, i.e.

di+ 1t < dy,

where d1, d; are the departure times of the first and second leg and t; the first legs travel time,
must hold.

Dwell Time Constraints

{"first_leg_id": 1,
"second_leg_id": 2,
"min_dwell_time": 20}

The second constraint type uses the field min_dwell_time to state the required amount of seconds
between arrival of a train at a station and its departure towards the next station. Hence, a valid
timetable must ensure that

di+tH+w<d

holds, where d1,d; are the departure times of the first and second leg, t; the first legs travel
time and w the minimal dwell time.

Terminal Turnaround Constraints

{"first_leg_id": 206,
"second_leg_id": 6149,
"min turnaround_time": 420}

These constraints are structurally identical to the dwell time constraints, such that a valid timetable
needs to ensure that
di+tH+w<dp

holds, where d1,d; are the departure times of the first and second leg, t; the first legs travel
time and w the minimal turnaround time.

Connection Constraints

{"first_leg_id": 8846,
"second_leg_id": 3110,

"min_connection_time": 180,
"max_connection_time": 240,
"connection_type": "arrival_to_departure"}

The connection constrains use the fields min_connection_time and max_connection_time to state
the minimal and maximal connection time in seconds as well as the field connection_type to
state the constraint type. In particular, “arrival_to_departure” states that the connection time
is measured between arrival of the first leg and departure of the second leg, whereas “depar-
ture_to_departure” means the time between departures. Therefore, a valid timetable must then
ensure that

di+ti+c<dyANdy+t1 +¢>dp if constraint type is “arrival_to_departure”
di+c<dyNdy+7©T>dy, if constraint type is “departure_to_departure”

holds, where d1,d;, are the departure times of the first and second leg, t; the first legs travel
time and ¢, ¢. are the minimal and maximal connection time respectively.

Recuperation Subnet Constraints

{"subnet_id": 1,
"track_ids": [1, 2, 3, ...1}

In our underground application the power network is subdivided into several power subnets
and recuperation is only possible between trains in the same subnet. This is not a regular con-
straint in the sense that it renders some timetables invalid, but rather limits recuperation pos-
sibilities and therefore changes what an energy efficient timetable looks like. Full details can
be found in the objective description in Section XXX.

3

1.4 Parsing Routines

The file formats were designed to be easy to read using Python 3 [VRD09] and the pandas data
analysis framework [pdt20, WM10]. The following routines can be used to transform the CSV
files into easy-to-use dataframes and the JSON file into a constraint dictionary. Note, that these
routines already parse the input to integers and floats respectively. In particular, they parse the
string representations of departure configurations to a list containing the three integer values
for departure time, travel time and power profile ID.

Parsing timetable.csv

import pandas

def parse_dc(s):
m = map (lambda x: [int (i) for i in x.split('_’")1,
s.split (" "))
return list (m)

dtypes = {'leg_id’: ’"Int64d’,
"train_id’: 'Inted’,
"track_id’: "Inte64d’,
"start_station_id’: 'Int64d’,
"end_station_id’: 'Inte64d’}
converters = {
"nominal_departure_configuration’: lambda x: parse_dc(x) [0],
"departure_configurations’: parse_dc}
df = pandas.read_csv('timetable.csv’,

dtype=dtypes,
converters=converters)

Parsing profiles.csv

import pandas

dtypes = {'profile_id’: 'Int64d’}
converters = {
"power_consumptions’: lambda x: [float(f) for f in x.split(’ ’)]}

df = pandas.read_csv('profiles.csv’,
dtype=dtypes,
converters=converters)

Parsing constraints.json

import codecs
import json

with codecs.open(’constraints.json’, 'r’) as infile:
constraint_dict = json.load(infile, encoding='utf-8', parse_int=int)

2 Instances

The rail and power network topologies are based on the underground network of Niirnberg,
Germany, which consists of three underground lines supplied by a power network consisting
of four subnets. Driverless operation of the lines U2 and U3 has been in place since 2008.

The Timetables used for the underground instances are four real timetables from the year
2020. More precisely, two workday timetables, one timetable for Saturdays and finally a timetable
for Sundays and holidays. The workday timetables are both used Monday through Friday, but
there is one version for regular workdays and another for school holidays, where transportation
in the morning and early afternoon are planned differently. For the underground timetables,
all constraint types described in Section|1.3|are relevant.

The Power Profiles used in the underground instances were derived from control signals
measured during everyday operation as well as typical train characteristics like weight, elec-
trical power of the engines, current flow, voltage and recuperation efficiency. The measure-
ments include current speed, distance traveled and the acceleration control signal.

For a small subset of trains it was possible to directly measure the power consumptions (and
recuperations) at the engines. A comparison to our approximated measurements showed that
in most cases, our approximation is close to reality. An example comparison is shown in Fig.
We can clearly see that the curves representing the calculated (AZG) and the measured (DL350)
power consumptions coincide for the most part with small deviations around the 8, 18 and 50
second marks. The cause of the first two deviations is unknown. However, we know that the
third and largest deviation, is caused by no other train being available to use the recuperated
energy. In this case the energy is not fed back into the power network (and thus measured by
the DL350 device), but instead discharged via heat dissipation.

100 5
14.40 kWh total consumption AZG mm \elocity
90 14.75 kWh total consumption DL350 Power consumption from AZG

80 B Power consumption from DL350 - 4
70
60 3
50
40 2
30

20 1
10 A
0 0

=10

—20 -1
-30

-40 -2
-50 -9 27 kWh total recuperation AZG 5.13 kWh combined consumption AZG

-7.67 kWh total recuperation DL350 T.07 kWh combined consumption DL350
—60 -3
0 10 20 30 40 50 60

Time (s)

Velocity (km/h)
Power (MW)

Figure 1: Example comparison for an underground profile measured in 2019 between the sta-
tions ‘Opernhaus” and ‘Plérrer’

Timetable Adjustments For each scheduled departure we allow the departure time to be
shifted by up to £15 seconds in 5-second intervals. Further, each leg may choose from three or
four different travel times, each with their own power profile. The alternate choices represent
the three most frequent travel times measured on the respective track, as well as the originally
scheduled travel time if it was not among the most frequent ones. For each combination of train
type, track and travel time used in the timetable we looked at the set of power profiles for this
combination, computed the total power consumption for each profile assuming full usage of
the recuperation energy available and chose the one with the median value for the total power
consumption.

Instance Characteristics An overview of the underground instances and their characteristics
is given in Table [

Table 4 Underground instances

Number of leg dependencies

Instance Trains Legs Headway Dwell Turnaround Connection
school, line Ul 513 11580 11660 11067 487 0
school, lines U2U3 992 12963 12919 11971 954 1
school, all lines 1505 24543 24579 23038 1442 152
school free, line Ul 402 10200 10275 9798 381 0
school free, lines U2U3 987 12932 12888 11945 952 1
school free, all lines 1389 23132 23163 21743 1334 152
saturday, line Ul 309 7917 7922 7608 295 0
saturday, lines U2U3 771 10188 10144 9417 749 1
saturday, all lines 1080 18105 18066 17025 1044 339
sunday, line Ul 240 6240 6303 6000 231 0
sunday, lines U2U3 601 8122 8078 7521 583 0
sunday, all lines 841 14362 14381 13521 814 772
3 Problem

On these instances, the problem to reduce the total power consumption via small timetable
adjustments is being solved. We refer the reader to [BGMS18] for full details on preliminary
work in a railway setting as well as [BGM20] for full details on work related to the underground
network in Niirnberg.

References

[BGM20] Andreas Barmann, Patrick Gemander, and Maximilian Merkert. The clique prob-
lem with multiple-choice constraints under a cycle-free dependency graph. Discrete
Applied Mathematics, 283:59-77, 2020.

[BGMS18] Andreas Biarmann, Thorsten Gellermann, Maximilian Merkert, and Oskar
Schneider. Staircase compatibility and its applications in scheduling and piecewise
linearization. Discrete Optimization, 29:111-132, 2018.

[pdt20] The pandas development team. Pandas 1.1.3. https://doi.org/10.5281/
zenodo . 35091 34|, October 2020.

[VRD09] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA, 2009.

[WM10] Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan
van der Walt and Jarrod Millman, editors, Proceedings of the 9th Python in Science
Conference, pages 56 — 61, 2010.

https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134

	1 Data Format
	1.1 Timetable and Adjustments
	1.2 Power Profiles
	1.3 Constraints
	1.4 Parsing Routines

	2 Instances
	3 Problem

